Risk of Extreme Events Under Nonstationary Conditions
نویسندگان
چکیده
The concept of the return period is widely used in the analysis of the risk of extreme events and in engineering design. For example, a levee can be designed to protect against the 100-year flood, the flood which on average occurs once in 100 years. Use of the return period typically assumes that the probability of occurrence of an extreme event in the current or any future year is the same. However, there is evidence that potential climate change may affect the probabilities of some extreme events such as floods and droughts. In turn, this would affect the level of protection provided by the current infrastructure. For an engineering project, the risk of an extreme event in a future year could greatly exceed the average annual risk over the design life of the project. An equivalent definition of the return period under Stationary conditions is the expected waiting time before failure. This paper examines how this definition can be adapted to nonstationary conditions. Designers of flood control projects should be aware that alternative definitions of the return period imply different risk under nonstationary conditions. The statistics of extremes and extreme value distributions are useful to examine extreme event risk. This paper uses a Gumbel Type I distribution to model the probability of failure under nonstationary conditions. The probability of an extreme event under nonstationary conditions depends on the rate of change of the parameters of the underlying distribution.
منابع مشابه
Investigating the Trend of Changing Future Extreme Temperature of Iran by Using CMIP5 Data
The aim of this study is to investigate the trend of spatial and temporal changes in the future extreme temperature of Iran. The data used include daily data of minimum temperature and maximum temperature of CCSM4 model during the basic period of 1986-2005 and the future period of 2006-2050 under scenarios of 4.5 and 8.5 in Iran. The results of studying the trend of warm and cold extreme during...
متن کاملFlood risk zoning due to climate change under RCP 8.5 scenario using hydrologic model SWAT in Gis (Azarshahr basin)
In the present time, with the increase of industrial activities and the neglected environmental issues, the effects of climate change have become more evident and poses this phenomenon as a global difficult. Increasing the probability of occurrence of extreme climatic events such as flood and increasing the frequency and intensity of the effects of climate change. The northwest of the country i...
متن کاملBiodecolourization of Azo Dye under Extreme Environmental Conditions via Klebsiella quasipneumoniae GT7: Mechanism and Efficiency
Introduction: Biodegradation of azo dyes under harsh environmental conditions has been of great interest for the treatment of colored effluents. The present study aims to evaluate Klebsiella quasipneumoniae GT7 for degrading azo dye Carmoisine under extreme pH conditions and high salinity. Materials and Methods: The growth profiles of bacteria were compared under different conditions of salini...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملPROGRESSIVE COLLAPSE ANALYSIS OF RCC STRUCTURES
The study aims to investigate the progressive collapse behaviour of RCC building under extreme loading events such as gas explosion in kitchen, terroristic attack, vehicular collisions and accidental overloads. The behavioural changes have been investigated and node displacements are computed when the building is subjected to sudden collapse of the load beari...
متن کامل